THE PROOF IS IN THE DIRT: VERIFYING PAST EARTHQUAKES

Presented by Brian Sherrod
U.S. Geological Survey
at Dept. of Earth and Space Sciences
University of Washington
Seattle, WA

Paleoseismology – study of past earthquakes using evidence from the geologic record (rocks, faults, etc.)

Outcrops of deformed sediments

LiDAI

Motivations for studying paleoseismology in central Washington:

- Landscape screams active tectonics.
- Cascade Mountains are usually considered a barrier faults on the west are considered separate from faults east of the Cascades. Two faults – White River-Naches River fault and Darrington-Devils Mountain fault – cut across Cascades. Do other faults? Faults on the west side are active – if they are connected with the YFTB, your faults are too.
- Thin skin tectonics vs thick skinned tectonics earlier hazard assessment assumed many of the folds in YFTB were thin skinned (not deeply rooted in crust) – and thus lacked seismic features like fault scarps from past earthquakes.

Scarp vertica

fault or by erosion.

30 Strike and dip

Oblique LiDAR image, Wenas Valley - Looking ~East

McCabe Place Trench Log -Wenas Valley, Umtanum Ridge

Why do we see normal faults at Wenas? The master reverse fault is buried – we can see evidence for it in the seismic reflection survey.

Recent surface ruptures on reverse faults shed light on what happened at Wenas.

Fault scarp at Boylston Ridge

Trench at Boylston Mountains

Trench Log, Boylston Mountains Trench

Reverse fault, motion indicated

Fissure boundary

Fractures

Basalt clast/block

Contac

- 4A Modern soil
- 2s Scarp colluvium, undeformed
- 2x2 Colluvium from most recent earthquake
- 3p Buried soil bearing distictive prismatic structure
- 2h Colluvium found only northwest of F1, integrates clasts of 1v and possibly eroded 3p
- 2x1 Colluvium from earthquake that pre-dates development of 3p
- 2a Colluvium from earthquake that pre-dates development of 3p
- 1cw Weathered top of 1c, or paleo C-Horizon
- 1c Brecciated, blocky, non-vesicular basalt, mapped as Grande Ronde Fm.
- 1vx Weathered, fractured 1v adjacent to F1. Fractures are sub- parallel to F1
- 1vw Weathered top of 1v, or paleo C-Horizon
- 1v Fractured, brecciated, vesicular, blocky basalt, mapped as Grande Ronde Fm.
- 1fx Jointed and fractured basalt, possibly colonnade of Grande Ronde Fm.

Fault plane dips ~85 degrees NW Grooves on the fault plane show RL oblique motion on fault

Fault scarp at Boylston Ridge

Stratigraphic Section at Fault Crossing in Johnson Canyon

Regional Interpretation of Trans-arc Fault System

Summary

Air photos and LiDAR reveal scarps at Wenas Valley and Boylston Mountains

Trenching studies along Umtanum Ridge in Wenas Valley show up to five earthquakes in the past ~50 ka on secondary normal faults above a blind (buried) fault tip

Trenching and outcrop studies along the scarp at Boylston Mountains uncovered a steeply dipping reverse fault with evidence for two recent earthquakes (last 7600 yrs)

Pattern of faults and folds is consistent with a popup structure above a RL master fault in pre-CRBG rocks